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Thermoelastic Fluctuations in Solids1

T. H. K. Barron2, 3 and A. Padmaja2, 4

Adiabatic thermoelastic heating can be used to monitor stress fluctuations in
solids. Previous studies of the effects on the temperature fluctuations both of
applied static stress and of the finite amplitude of the stress fluctuations have
used approximate theory. The present rigorous thermodynamic treatment dis-
tinguishes between adiabatic second-order derivatives needed for finite ampli-
tude and mixed derivatives needed for static applied stress. A detailed analysis
is given for purely compressive stress, followed by computations for KCl, NaCl,
Al, Cu, Ti, and the alloy Ti-6Al-4V. Additional terms revealed by the new
analysis prove to be substantial, including the difference between the adiabatic
and mixed derivatives. Revised forms are then proposed for earlier approxima-
tions. For unidirectional stress, expressions are taken from an analysis given
elsewhere; and computations made for Al, Cu, Ti and Ti-6Al-4V. Corrections to
earlier approximations are relatively smaller than for compressive stress, and of
opposite sign because the shear component of the unidirectional stress
dominates the second order effects.

KEY WORDS: aluminium; compressive thermoelasticity; copper; potassium
chloride; shear thermoelasticity; sodium chloride; thermal stress analysis; Ti-
6Al-4V; titanium.

1. INTRODUCTION

Oscillating stresses in solids give rise to oscillations in temperature. This
provides a means of monitoring stress fluctuations in a material; the
associated temperature fluctuations are scanned over the surface of the
material with the aid of a sensitive infrared detector [1].
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Although important effects can arise in applications from frictional
processes and from heat flow, the phenomenon is essentially adiabatic. It is
sometimes characterized by a ``thermoelastic constant,'' defined by [2]

K=&
1

T0 \
2T
2_ +S

(1)

where T0 is the mean temperature and 2T is the amplitude of the adiabatic
cyclic change in temperature caused by a cyclic change in the sum of the
principal stresses of amplitude 2_. We may note, however, that Eq. (1)
defines K uniquely only for isotropic or cubic materials under hydrostatic
pressure, since otherwise 2T depends upon the directions of the principal
stresses and how 2_ is distributed among them. Furthermore, even these
materials lose their symmetry as soon as an anisotropic stress is applied,
and so the derivatives of K with respect to such stresses are ill-defined. We
shall therefore retain K only for isotropic or cubic materials under isotropic
pressure, and redefine it as the ``thermoelastic coefficient''

K=
1

3T \�T
�P +S

(2)

For anisotropic stresses we shall refer only to the stress derivatives of T.
In any case, to refer to K as a ``constant'' can be misleading, because

a stress derivative of T is itself stress-dependent [3, 4]. This gives rise to
two second-order effects: (i) the temperature response to stress fluctuations
about a mean stress _m varies with _m ; and (ii) the temperature response
to a sinusoidally varying stress includes a second harmonic of double the
applied frequency.

Wong et al. [4, 5] developed a method for calculating the magnitude
of these effects from other properties of the material. Although they started
with time-dependent equations which took account both of heat flow and
of internal heat sources, they discarded all such nonequilibrium processes
before reaching their result, which was thus purely thermodynamic. They
tested the method experimentally for unidirectional stress fluctuations in
the titanium alloy Ti-6Al-4V, obtaining good agreement with experiment
[5]. However, their theory employed a number of approximations in the
thermodynamics which were not discussed or assessed; in particular, the
distinction between adiabatic and isothermal second derivatives was largely
ignored.

Subsequently Ledbetter et al. [6] considered the effect of pressure
rather than unidirectional stress. They used three different expressions for
the pressure dependence of K; one was derived by rough approximations

1202 Barron and Padmaja



from a Mie�Gru� neisen pair potential, another from the theory of Wong
et al., and the third from the second by further approximations due to
Chang [7] which are not always reliable [8]. These expressions gave values
which agreed with each other in order of magnitude for each of eight metals
studied, differing by 20 to 500.

In the present paper we derive exact thermodynamic expressions for
the temperature response of a material subjected to oscillating stress or
pressure. We investigate for various materials the importance of terms
neglected in the approximations of Wong et al. and Ledbetter et al. In
Section 2 we point out that it is the isothermal stress derivative of (�T��_)S

which determines the effect of the mean stress _m , and the adiabatic stress
derivative which determines the amplitude of the second harmonic response.
In Section 3 rigorous thermodynamic expressions are derived for the
pressure effects, and the approximations of Ledbetter et al. are modified
accordingly. Calculations on various materials show that terms neglected in
the method of Wong et al. make substantial contributions. In Section 4
expressions for unidirectional stress are quoted from a more general
analysis for orthorhombic symmetry given elsewhere [9]. Calculations
show that corrections to the theory of Wong et al. are still appreciable, but
much less important than for purely compressional stress.

2. STEADY-STATE RESPONSE TO FLUCTUATING STRESS

Wong et al. [5] applied their theory to a unidirectional stress, denoted
here by _U , with both static and sinusoidal components:

_U=_m+2_ sin |t (3)

where _m and 2_ are constants. We start by taking a more general form,

_U=_m+_v (4)

where _m is the mean stress and _v is an oscillating component of arbitrary
shape, so that

(_U) =_m , (_v)=0 (5)

where ( } } } ) denotes averaging over an oscillation. After a sufficiently long
time, the mean temperature will approach a limiting value Tm ; if lossy
processes are neglected, Tm is given by the ambient temperature T0 . The
steady-state response is thus purely oscillatory, and is determined by
(�T��_U)S , which is itself stress-dependent. Moreover, the effects of _m and
_v on (�T��_U)S must be considered separately. In the steady-state, _m has
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no effect upon the temperature, so that its effect on (�T��_U)S is isother-
mal; whereas in the limit of rapid oscillations the effect of _v is adiabatic.
To the first order in the stress, therefore,

\ �T
�_U+S

=\ �T
�_U+S; 0

+_ �
�_U \ �T

�_U+S&T ; 0

_m+_�2T
�_2

U &S; 0

_v (6)

where the subscript 0 denotes evaluation at _U=0, T=T0 . Integration
with respect to _v then gives

T&T0={\ �T
�_U+S; 0

+_ �
�_U \ �T

�_U+S&T ; 0

_m= _v

+
1
2 _

�2T
�_2

U&S; 0

[(_v)
2&( (_v)

2)] (7)

where the constant term is fixed by the steady-state condition (T)=T0 .
For the sinusoidal oscillation _v=2_ sin |t, this becomes

T&T0={\ �T
�_U+S; 0

+_ �
�_U \ �T

�_U+S&T ; 0

_m= 2_ sin |t

&
1
4 _

�2T
�_2

U&S; 0

(2_)2 cos 2|t (8)

The response to an applied pressure P=Pm+2P sin |t is similarly

T&T0={\�T
�P +S; 0

+_ �
�P \�T

�P +S&T ; 0

Pm= 2P sin |t

&
1
4 _

�2T
�P2 &S; 0

(2P)2 cos 2|t (9)

In Eqs. (8) and (9) the small second-order terms in cos 2|t do not alter the
amplitude 2T of the cyclic change in T, since they raise the maximum and
minimum temperatures by the same amount. To this approximation, there-
fore, the thermoelastic ``constant'' of Eq. (1) is independent of the ampli-
tude of the fluctuations; and its dependence on the mean stress is given by
a mixed isothermal�adiabatic derivative of T. On the other hand, the
magnitude of the second harmonic response depends on the square of
the amplitude (2_)2 or (2P)2 as given by the purely adiabatic second
derivative [�2T��_2

U]S or [�2T��P2]S .
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The result of Wong et al. [5] for unidirectional stress is given by their
Eq. (2.6), which may be written in the present notation as

C'

V \T&T0

T0 +=&\:&
1

E 2

�E
�T

_m+ 2_ sin |t&
1

4E2

�E
�T

(2_)2 cos 2|t
(10)

where C' is the heat capacity at constant strain, V is the volume, : is the
coefficient of linear expansion in the direction of the stress, and E is
Young's modulus.5 Comparison of Eq. (10) with Eq. (8) shows that Wong
et al. do not distinguish between the different kinds of second-order
derivatives. For unidirectional stress their approximations are equivalent to
taking

\ �T
�_U+S; 0

r &:TV�C' (11)

and

_ �
�_U \ �T

�_U+S&T ; 0

r_�2T
�_2

U&S; 0

r&
TV
C' _

�
�T \ 1

E+&_; 0

(12)

However, such approximations are unnecessary, because exact thermo-
dynamic expressions for the various stress derivatives are obtainable. In the
next section the general method is illustrated in detail by its simplest
application, viz. to a solid under fluctuating hydrostatic pressure. Unidirec-
tional stress is treated briefly in Section 4.

3. TEMPERATURE RESPONSE TO FLUCTUATING PRESSURE

3.1. Thermodynamic Expressions

Experimental quantities from which thermoelastic pressure effects can
be derived are the volume V, the adiabatic compressibility /S (or bulk
modulus BS)

/S=(1�BS)=&(1�V )(�V��P)S (13)

the coefficient of volumetric expansion ;, and the heat capacity at constant
pressure CP , together with their temperature derivatives at constant
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pressure; alternatively, CP and V may be replaced by the specific heat per
unit mass cP and the density \, since they are needed only in the combina-
tion CP �V=\cP . The derivatives in Eq. (9) are then obtained from the
following thermodynamic analysis.

A Maxwell relation,

(�T��P)S=(�V��S)P (14)

gives immediately

_�T
�P &S

=_�V
�T &P _

�T
�S &P

=
;VT
CP

=#/ST (15)

where # is the thermodynamic Gru� neisen function defined by (see, e.g.,
Refs. 10 and 11)

##_ �P
�(U�V )&V

=&_� ln T
� ln V &S

=
;V

/S CP
(16)

Equations (13) and (14) then give for the adiabatic second pressure
derivative

_�2T
�P2 &S

=
�2V

�P �S
=&_ �

�S
(V/S)&P

=&
T

CP _
�

�T
(V/S)&P

=&
VT
CP {_�/S

�T &P
+;/S= (17)

=&(;VT/S�CP)($S+1) (18)

where $S is the adiabatic Anderson�Gru� neisen function defined by Bassett
et al. [12]:

$S=&_� ln BS

� ln V &P
=_� ln /S

� ln V &P
=&

1
;BS _

�BS

�T &P
(19)

The isothermal pressure derivative may then be obtained from the identity

_ �
�P \�T

�P+S&T
=_�2T

�P2&S
&_ �

�T \�T
�P +S&P \

�T
�P+S

(20)
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which with the aid of Eqs. (15) and (17) gives the derivative explicitly in
terms of primary experimental quantities:

_ �
�P \�T

�P +S&T

=&
VT
CP {_

�/S

�T &P
+;/S+

V;
CP \;+;2T+T _ �;

�T&P
&

;T
CP _

�CP

�T &P+=
(21)

In contrast, the method of Wong et al. gives for the second derivatives
(cf. Eq. (12))

_�2T
�P2 &S

r_ �
�P \�T

�P +S&T
r &

VT
CV _ �/

�T&P
(22)

Equation (17) shows that it is the adiabatic compressibility whose isobaric
temperature derivative is required, that the denominator should be CP

(rather than C' or CV), and that there is an additional term in (�2T��P2)S .
Equation (21) shows that there are further additional terms in [(���P)
(�T��P)S]T .

The results obtained in this subsection apply not only to isotropic
material but also to any homogeneous material under hydrostatic pressure.

3.2. Pressure Derivative of the Thermoelastic Coefficient

For a cubic or isotropic material, the thermoelastic coefficient of
Eq. (2) is given by

K=
1
3 \

� ln T
�P +S

=
1
3

;V�CP=
1
3

#/S (23)

Approximate thermodynamic expressions for its pressure derivative have
been suggested by Ledbetter et al.:6

1
K0 \

�K
�P+r&

$
B0

r&
1

B0 \
dBT

dP
&1+r&

1
B0 \

dBS

dP
&1+ (24)

Like those of Wong et al., these expressions do not distinguish fully
between adiabatic and isothermal processes. We have seen in Section 2 that
it is the mixed second derivative of Eq. (21) that is relevant to the pressure
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dependence of K. Using this derivative, and also by direct differentiation of
the last of Eqs. (23) [13], exact expressions can be obtained in place of
those of Eqs. (24):

1
K \�K

�P+T
=&

$S

BT
&

1
BS

[1+#+(�#�� ln T )P] (25)

=&
$T

BT
&

1
BS

[1&(VT�CP)(�;��T )P] (26)

=&
1

BS \_
�BS

�P &T
+(1+;#T ) q+ (27)

where BT is the isothermal bulk modulus BS�(1+;#T ), $T is the iso-
thermal Anderson�Gru� neisen function (� ln /T�� ln V )P (see Ref. 12), and

q=(� ln #�� ln V )T=(V�#)(�#��V )T (28)

sometimes called the second Gru� neisen function.7

At high temperatures (�;��T )P and (�#��T )P are usually fairly small,
;#T and the difference between BS and BT seldom exceed 100, and (less
reliably) q is often about unity. Equations (25)�(27) thus suggest the
following rough approximations as modifications of Eqs. (24):

1
K \�K

�P+T
r&

$S+1+#
BS

r&
$T+1

BS
r&

(�BS��P)T+1
BS

(29)

3.3. Experimental Magnitudes and Discussion

We have used Eqs. (15), (17), and (21) to calculate pressure derivatives
of T for several of the materials considered by Wong et al. and Ledbetter
et al., and also for two alkali halides. It is difficult to estimate error in the
primary data, and different measurements often disagree, especially at
room temperature where high and low temperature ranges meet. The
values we have adopted are good enough to let us assess the relative
importance of different terms in the thermodynamic expressions, but we
have not attempted a critical assessment of all available data. We give only
the room temperature values (Table I), although for all the materials
except the titanium alloy we have calculated pressure derivatives and K
over a range of temperatures. Table II lists values for room temperature
and one higher and one lower temperature, together with the quantity
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Table I. Experimental Data for Pressure Analysis

Material /S : cP \ �/S

� ln T+P \� ln :
� ln T+P \� ln CP

� ln T +P

(TPa&1) (10&6 K&1) (J } kg&1 } K&1) (TPa&1)

NaCl 39.9 39.0 864 4.70 0.257 0.145
KCl 56.1 36.3 686 5.60 0.485 0.057
Al 13.1 16.7 906 0.924 0.179 0.154
Cu 7.16 16.7 386 0.378 0.181 0.156
Ti 9.33 8.30 520 0.290 0.322 0.176
Ti-6Al-4V 9.43 9.14 529 0.281 0.199 0.245

W2P=&(VT�CP)(�/S��T )P . W2P is the first term in Eq. (17), and gives
the value obtained by the method of Wong et al., except for the factor
CV �CP which is close to unity. Table II shows that at all temperatures the
mixed derivative is larger than the adiabatic derivative, typically by a fac-
tor of about 1.5, although less (about 1.25) for Ti and Ti-6Al-4V. Neither
derivative is approximated closely by W2P; the adiabatic and mixed
derivatives are greater by factors of about 1.3 and 1.8, respectively.

Table II. Calculated Pressure Derivatives

Material T \�T
�P+S

K \�2T
�P2+S _ �

�P \�T
�P+S&T

W2Pa

(K) (K } GPa&1) (TPa&1) (K } GPa&2) (K } GPa&2) (K } GPa&2)

NaCl 160 9.01 18.77 &1.50 &2.06 &1.15
NaCl 294 18.73 21.23 &3.30 &4.67 &2.56
NaCl 675 53.90 26.62 &11.8 &17.9 &9.22
KCl 160 12.12 25.24 &3.50 &4.53 &2.85
KCl 300 24.08 26.75 &5.46 &8.28 &4.11
KCl 550 53.03 32.14 &16.40 &23.59 &13.13
Al 160 3.52 7.32 &0.229 &0.294 &0.184
Al 300 6.12 6.80 &0.457 &0.587 &0.377
Al 550 16.68 10.11 &1.08 &1.49 &0.845
Cu 160 2.25 4.69 &0.065 &0.098 &0.050
Cu 295 4.28 4.84 &0.140 &0.205 &0.110
Cu 673 10.37 5.14 &0.368 &0.546 &0.287
Ti 223 2.34 3.49 &0.117 &0.139 &0.095
Ti 293 3.11 3.54 &0.153 &0.191 &0.124
Ti 673 8.00 3.96 &0.402 &0.507 &0.324
Ti-6Al-4V 295 3.46 3.91 &0.153 &0.192 &0.120

a W2P is the approximation used by Ledbetter et al. [6]: W2P=&(VT�CP)[�/S ��T ]P .
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Table III. Modified Approximations for (� ln K��P)T at Room Temperature

Material \�BS

�P +T \� ln K
�P +T

&
$S+1+#

BS
&

$T+1
BS

&
(�BS ��P)T+1

BS

(TPa&1) (TPa&1) (TPa&1) (TPa&1)

NaCl 5.3 &249 &240 &254 &251
KCl 5.1 &344 &307 &368 &342
Al 4.9 &96 &95 &98 &78
Cu 5.5 &48 &47 &49 &47
Ti �� &61 &60 &64 ��
Ti-6Al-4V �� &55 &56 &57 ��

Table III gives room temperature isothermal pressure derivatives of
ln K, compared with the approximations of Eqs. (29). The approximations
have errors of about 100 or less, except for Al, where the 200 error for
the third approximation appears to stem from a high value of q. Similar
calculations made at other temperatures showed that K and its isothermal
pressure derivative increase fairly slowly with temperature, typically by
about 100 every 100 K. The first two approximations of Eqs. (29)
remained accurate to within about 100, the first approximation being
closest at low temperatures and the second at high temperatures. The third
approximation was tested only at room temperature, because for other
temperatures the values of (�BS��P)T were not readily available.

4. RESPONSE TO FLUCTUATING UNIDIRECTIONAL STRESS

4.1. Thermodynamic Expressions

The derivation of expressions for second-order stress derivatives is
more complex than for pressure derivatives, mainly because there are no
finite strain coordinates thermodynamically conjugate to elements of the
Cauchy stress tensor _:; . A rigorous analysis for orthorhombic symmetry
is given elsewhere [9], which includes as a special case unidirectional stress
_U in an isotropic material. This gives

\ �T
�_U+=&

1
3 \

�T
�P+=&\VT

CP + : (30)

_�2T
�_2

U&S; 0

=&\VT
CP +_\

�(1�ES)
�T +P

&: \1+4&S

ES +& (31)
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_ �
�_U \ �T

�_U+S&T ; 0

=_�2T
�_2

U&S; 0

&\TV 2:2

C 2
P +

__1+;T&\� ln CP

� ln T +P
+\ � ln ;

� ln T+P& (32)

where ES and &S are, respectively, the adiabatic Young's modulus and
Poisson's ratio. Comparing these with Wong's approximations of Eqs. (11)
and (12), we see that C' should be replaced by CP , that the Young's
modulus required is ES , and that there are additional terms in the second
derivatives which then differ from each other.

4.2. Experimental Magnitudes and Discussion

We have used Eqs. (31) and (32) to compute second-order unidirec-
tional stress derivatives of T for some metals, including the alloy studied by
Wong [5]. Table IV gives some results, together with ES and its tem-
perature derivative (other data are in Table I). The most obvious features
of these results compared with those for hydrostatic pressure is that the
additional terms reduce instead of enhancing the magnitudes given by the
Wong approximation W2U=&(VT�CP)[�(1�ES)��T ]P , and also that the
difference between the adiabatic and mixed second derivatives is relatively
much smaller than that between the analogous pressure derivatives. This
can be explained by expressing _U as a combination of a strong shear stress
_SH and a comparatively weak negative pressure. Up to the second order,
in an isotropic material these components affect the temperature indepen-
dently. Although the first-order shear derivative (�T��_SH)P is zero, the

Table IV. Calculated Stress Derivatives at Room Temperature

Material E &1
S \�(E &1

S )
� ln T +P \�2T

�_2
U+S _ �

�_U \ �T
�_U+S&T

W2U a

(TPa&1) (TPa&1) (K } GPa&2) (K } GPa&2) (K } GPa&2)

Al 14.3 2.44 &0.923 &0.937 &0.993
Cu 7.80 0.78 &0.200 &0.208 &0.227
Ti 8.68 1.55 &0.642 &0.646 &0.662
Ti-6Al-4V 9.00 1.18 &0.481 &0.485 &0.505

a W2U is the approximation used by Wong et al. [5]: W2U=&(VT�CP)[�(1�ES)��T ]P .
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second derivatives are large and dominate the unidirectional stress deriva-
tives. If _SH has strength equivalent to _23=_SH , then [9]

(�2T��_2
SH)S=(&VT�CP)[[�(1�G)��T ]P&;(1�G)] (33)

where G=GS=GT is the rigidity modulus; moreover, there is no difference
between the adiabatic and mixed second differentives because (�T��_SH)S=0.
The second term of Eq. (33) is of opposite sign to the Wong approximation
(given by the first term), reducing the magnitude. For unidirectional stress
derivatives this is partially compensated by the additional terms in the
small pressure contributions, which therefore lessen differences from the
Wong approximation and also produce a small difference between the
adiabatic and mixed derivatives. Corrections to W2U are particularly small
for Ti and Ti-6Al-4V, which may explain why Wong et al. [5] obtained
good agreement with their experimental results for unidirectional stress
despite their neglect of terms important for other types of stress.

5. CONCLUSION

We have found that errors in earlier approximations for second-order
thermoelastic effects in isotropic materials are substantial for compressive
stress but much smaller for unidirectional stress. Elsewhere [9] we discuss
(i) more complex stress fields in isotropic materials, including whether it is
possible to deduce from temperature fluctuations the separate contributions
of compressive and shear stress; and (ii) anisotropic materials.
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